

Lifecycle Triggers and Personalised Recommendations

Gabor Erdos | Charmee Patel

sy INTRO

Gabor Erdos

Data Activation Lead

RS Components

Charmee Patel
Product Innovation - Data & Analytics
SYNTASA

since 1937

6000+ employees

32 locations

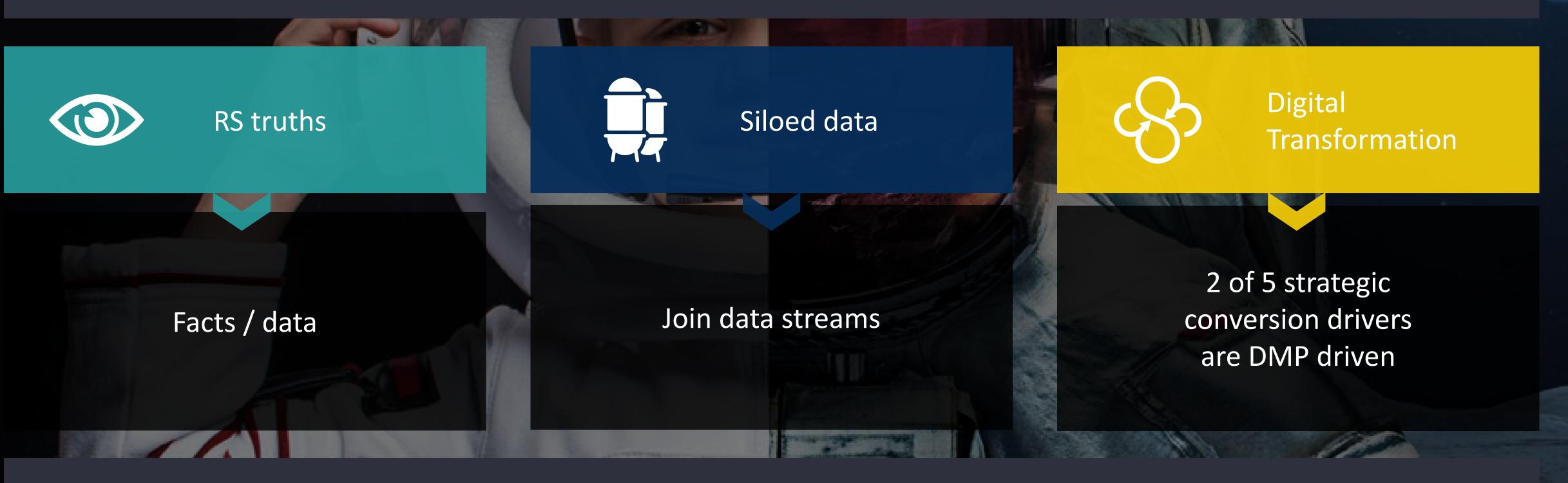
500k+ products

70% digital sales

100m visits

£1bn digital sales

WHY IS DATA SCIENCE IMPORTANT TO RS COMPONENTS?



DATA SCIENCE DOESN'T HAVE TO BE COMPLICATED



We are a B2B organization with the realisation that we need to act as a B2C business

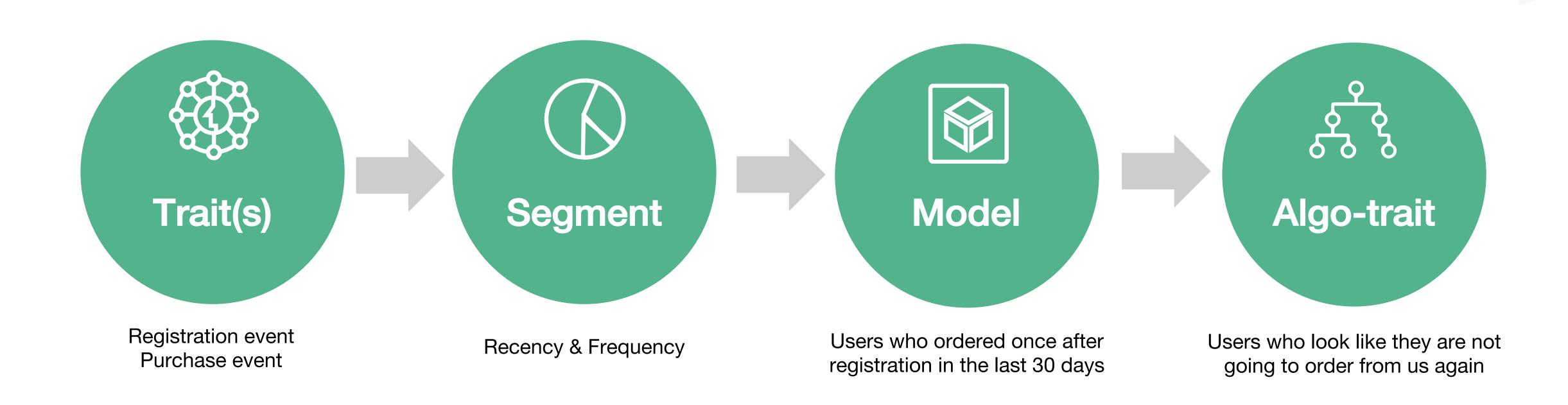
ST CHALLENGE STATEMENT

- 12,500 users register themselves and place their 1st order every month
- 70% don't place another order within 30 days
- How can we intelligently target them with better products to make them convert again?
- What is the next best action?
- Customer Lifecycle The Early Stage

ST CUSTOMER WISH LIST

- Must be able to run the data from Adobe and Offline sources in the RS Virtual Private
 Cloud Data Environment
- Must be able to leverage open algorithmic approaches to build propensity scores across the known customer data set.
- Must be able to connect to the RS DMP to provide targeted lists to the RS Marketing Tech stack
- Must be measurable

Find the audience in Adobe Audience Manager



ST THE SOLUTION

Target audience

Consistent message across channels and site

Track success

Reduce the proportion of drop-offs after 1 order

WHAT IS THE MESSAGE?

Next stage of customer lifecycle

Next best action model

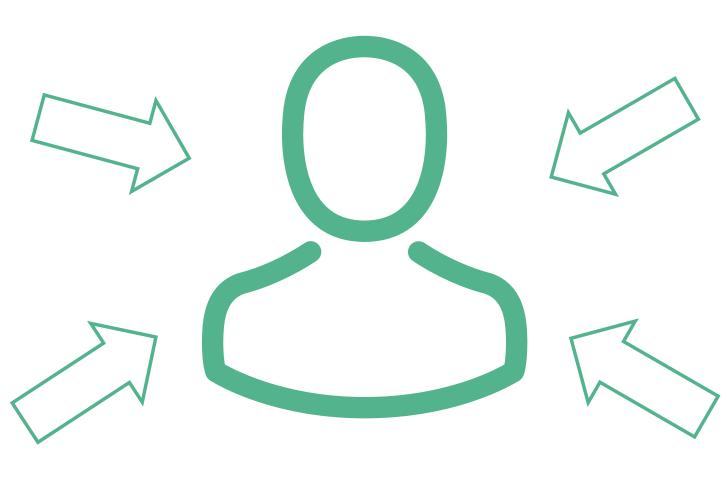
Content options for campaigning for second order

GENERAL

value proposition

PERSONALIZED

product recommendation



"Utilise multiple data sources to truly understand RS customers and generate accurate product recommendations for our new customers"

Multiple data sources

Adobe Analytics

Daily, automated upload

Adobe Campaign logs

Daily, automated upload

Offline transactional data

Weekly, automated upload

Adobe Audience Manager

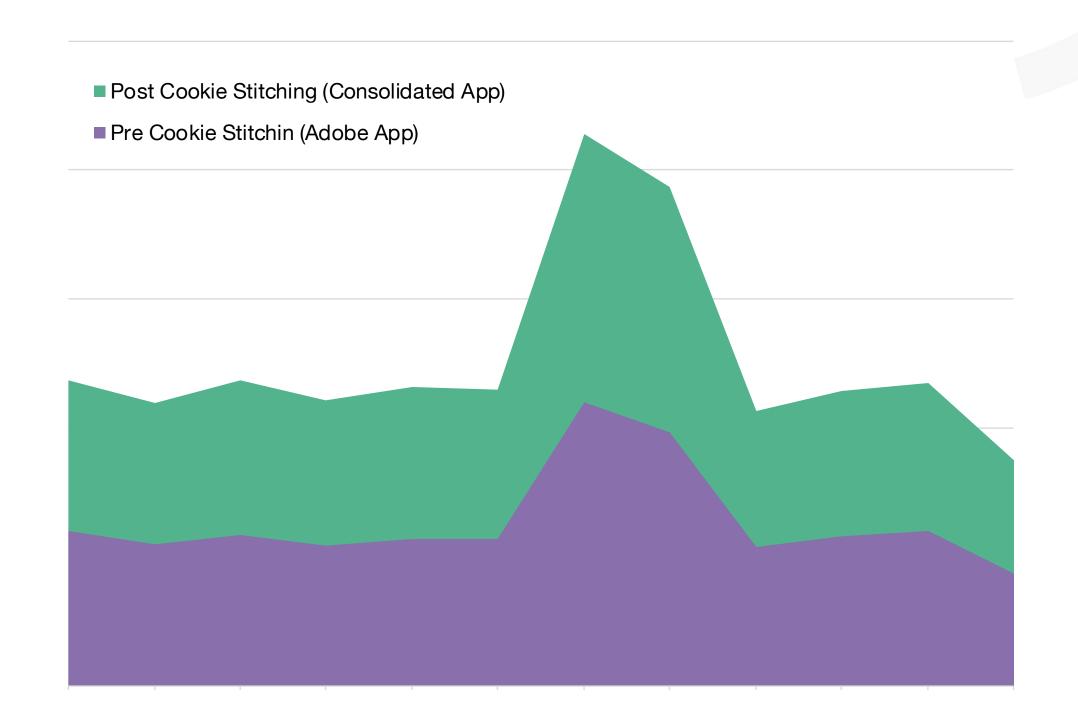
Adobe Campaign

Adobe Target

Paid Advertising

Cookie stitching results

- Increased the amount of known customer data by 115%
- Process uses cookie to customer ID matches retrospectively & proactively
- Optimises data for modelling, segmentation & analysis



ST THE SOLUTION

PLANNED WORK

All Products Recommendation Model

 Generating up to 50 Product Family Recommendations for each website visitor

RS Pro Recommendation Model

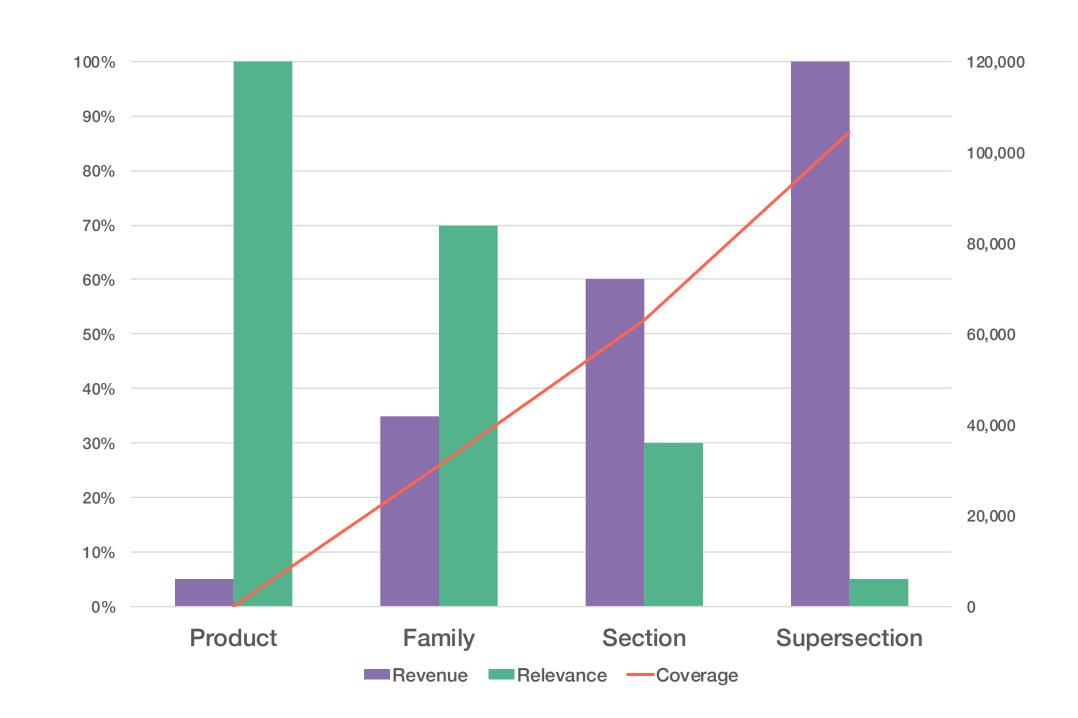
 A second model will work as per the above but be restricted to products in the RS Pro product range

SY EXPERIMENTATION

EXPERIMENTATION

Initial Data Analysis

- 5 Products out of 1 Product family vs. 5 Product families
- Generate recommendation at what level?



STEAMENTATION PLAN

- Recommend 5 families out of 50 families per customer
- Models based on Apr and May 2018 data
- Evaluation metric precision@k (with k =5)
 - Recommend 5 families to a customer and if any of those 5 families were included in next 2 purchases, consider the recommendation to be correct
- Pick a baseline to compare effectiveness of model
- Baseline of recommending top 5 families to every customer
 - Precision of 0.13

Sì

MODEL 1 EXPERIMENTATION

FP GROWTH

- Algorithm to identify frequent item-sets
- Originally developed to do market basket analysis
- Useful for identifying patterns like
 - "Customers who bought Processor & Microcontroller Development Kits are likely to buy Plug In Power Supply"
 - "Customers who bought Ceramic Multilayer Capacitors are likely to buy Surface Mount Fixed Resistors"
- Generated a precision of 0.17 overall (1.3X lift)
 - This model generated 2 types of cases and above precision is by combining below cases
 - Customers for whom there was a recommendation (precision 0.4)
 - Customers for whom there was no recommendation (all considered as misclassified)

MODEL 2 EXPERIMENTATION

ENSEMBLE - FP GROWTH + REPURCHASE PROBABILITY

- RS's customers tend to repurchase same family with a high rate (16% of existing customers and 25% of new customers)
 - This is not a normal occurrence in 'recommendation problems'
 - A standard model will not be enough for our problem
- An ensemble model was generated based on
 - Repurchase probability based on families
 - FP-Growth
- Generated a precision of 0.42 overall (3X lift)
- Even after eliminating families that are not purchased often, this model recommends a total of 450 families out of roughly 3000 families
- Reducing this down to only 50 families will reduce the lift drastically

Sì

MODEL 3 EXPERIMENTATION

MULTI CLASS CLASSIFICATION MODEL

- Considering that we can only recommend a static set of 50 families and there is a high rate of repurchase, a classification model is a good fit
- A Multi-Class classification model was generated that
 - Predicts how likely a customer is to purchase any of the 50 product families
 - Identify top 5 products a customer is interested in
- This model generated a precision of 0.5 overall
- Considerations:
 - This model recommends 5 families for all customers (existing and new)
 - Model does not wait until customer makes very first purchase to recommend next product
 - About 10% of new customers explore products, register but do not purchase on that day and purchase products later
 - Having recommendations in place for those customers can be beneficial

FUTURE POSSIBILITIES

Good fit for full scale Amazon style recommendation

- Large (individual) Product space
- Stable customer base

Different purchasing patterns observed – in-depth analysis needed to confirm

- Loyal customers who repeatedly buy similar products regularly
- Not so regular customers
- Customers at risk
- Further benefits towards Personalization, Promotions (RS Pro brand products)

Customer acquisition Journey Analytics

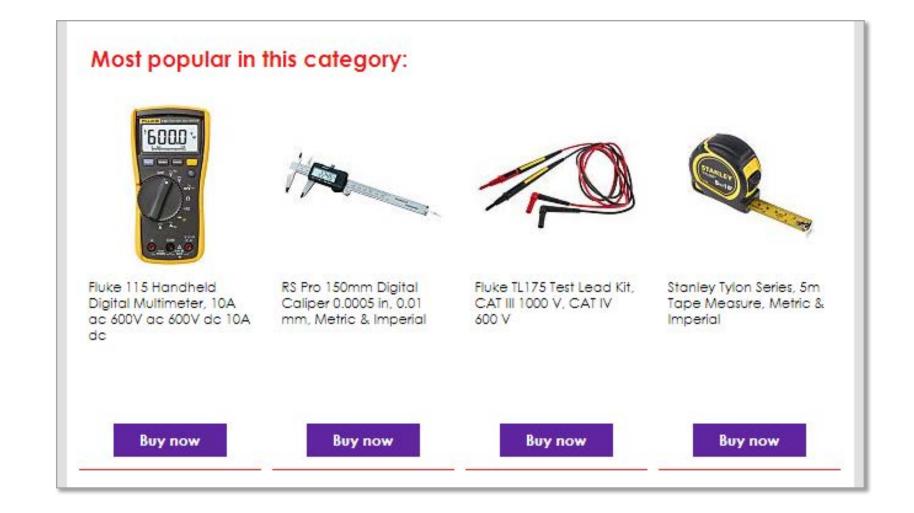
Activation

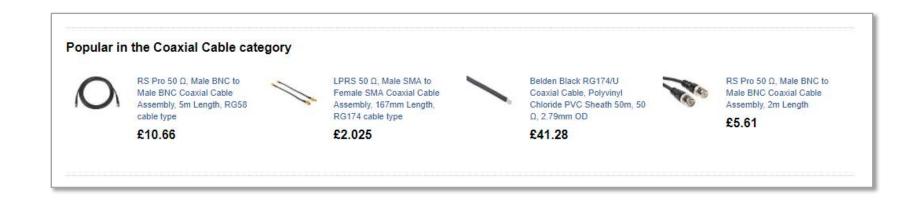
Adobe Audience Manager

Adobe Campaign

Adobe Target

Paid Advertising





SI Q&A

